Carbon Mitigation Initiative: Technical References  
Carbon Mitigation Initiative
CMI

Overviews

Dubey, M.K. et al. (2003). "Chemical Extraction of Carbon Dioxide from Air to Sustain Fossil Energy by Avoiding Climate Change." 2nd Annual Conference on Carbon Sequestration, May 7, 2003, Alexandria, VA. (Powerpoint Presentation)
Figueroa, J.D. et al. (2008). “Advances in CO2 Capture Technology - The U.S. Department of Energy's Carbon Sequestration Program.” International Journal of Greenhouse Gas Control 2(1): 9-20.
doi:10.1016/S1750-5836(07)00094-1
IPCC (2005). “IPCC Special Report on Carbon Dioxide Capture and Storage.” Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.
Keith, D., M. Ha-Duong, & J. Stolaroff (2005). “Climate Strategy with CO2 Capture from the Air.” Climatic Change, 74(1-3): 17-45.
doi:10.1007/s10584-005-9026-x.
Keith, D.W., K. Heidel, and R. Cherry (2010). “Capturing CO2 from the atmosphere: rationale and process design considerations,” in Engineering Climate Change: Environmental Necessity or Pandora's Box?, B.L.a.M.T. Thompson, Editor. Cambridge University Press: Cambridge, U.K: 107-126.
Keith, D. W., (2000). “Geoengineering the Climate: History and Prospect.” Annual Reviews Energy Environ., 25:245–84. doi:10.1146/annurev.energy.25.1.245
Kunzig, R., & W. Broecker, (2009). “Can technology clear the air?” New Scientist, 2690:34-37.
Lackner, K.S., P. Grimes, & H. J. Ziock, (2001). “Capturing Carbon Dioxide From Air.” Proceedings of the First National Conference on Carbon Sequestration, May 14-17, Washington, DC. Sponsored by U.S. Dept. of Energy, National Energy Technology Laboratory.
Lackner, K.S. (2010). "Washing Carbon out of the Air." Scientific American, June 1, 2010.
Mastrandrea, M. D. and S. H. Schneider (2008). "The Rising Tide - Time to adapt to climate change" Boston Review (Nov/Dec 2008): 7-10.
Pielke, R.A., Jr. (2009). “An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy.” Environmental Science & Policy, 12(3): 216-225. doi:10.1016/j.envsci.2009.01.002
Ramezan, M., et al. (2007). “Carbon Dioxide Capture from Existing Coal-fired Power Plants.” US Department of Energy–National Energy Technology Laboratory, DOE/NETL-401/110907.
Ranjan, M., (2010) "Feasibility of Air Capture." Masters Thesis, M.I.T., June 2010.
Ranjan, M. and H. Herzog (2010). "Feasibility of Air Capture," Proceedings of the 10th International Conference on Greenhouse Gas Control Technologies (GHGT-10), Energy Procedia, 4: 2869-2876.
doi:10.1016/j.egypro.2011.02.193
The Royal Society, (2009). “Geoengineering the Climate: science, governance and uncertainty.”
Schneider, Stephen H. (2008). "Geoengineering: could we or should we make it work?" Philosophical Transactions of the Royal Society A, 366: 3843-3862. doi:10.1098/rsta.2008.0145
Stephens, Jennie C., and D. W. Keith. (2008). "Assessing geochemical carbon management" Climatic Change, 90(3): 217-242.
doi:10.1007/s10584-008-9440-y
Victor, D.G., M.G. Morgan, et al. ( 2009). "The Geoengineering Option: A Last Resort Against Global Warming?" Foreign Affairs. 88(2): 64-76.
Zeman, F. S., & D. W. Keith (2008). “Carbon neutral hydrocarbons.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1882): 3901-3918.
doi:10.1098/rsta.2008.0143

Back to Top

CO2 Collection & Contact Systems

Baciocchi, R., Giuseppe S., & M. Mazzotti (2006). “Process design and energy requirements for the capture of carbon dioxide from air.” Chemical Engineering and Processing, 45(12): 1047-1058.
doi:10.1016/j.cep.2006.03.015
Chapel, D., et al. (1999). "Recovery of CO2 from Flue Gases: Commercial Trends." Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada.
Dubey, M.K., H. Ziock et al. (2002). "Extraction of Carbon Dioxide from the atmosphere through engineered chemical sinkage." LA-UR-01-6473, Fuel Chemistry Division Preprints, 47(1): 81.
Elliott, S., et al. (2001). “Compensation of Atmospheric CO2 Buildup through Engineered Chemical Sinkage.” Geophysical Research Letters, 28(7): 1235-1238. doi:10.1029/2000GL011572
Greenwood, K, & M. Pearce (1953). “The Removal of Carbon Dioxide from Atmospheric Air by Scrubbing with Caustic Soda in Packed Towers.” Transactions of the Institution of Chemical Engineers, Chemical Engineering Research and Design, 31a: 201-207.
Klara,S., D. Lang, & H. Ghezel-Ayagh (2008). “Combined Power Generation and Carbon Sequestration Using a Direct Fuel Cell.” National Energy Technology Laboratory Project Factsheet.
Kozak, F., et al. (2009). “Chilled ammonia process for CO2 capture.” Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), Energy Procedia, 1(1): 1419-1426.
doi: 10.1016/j.egypro.2009.01.186
Krumdieck, S., J. Wallace, & O. Curnow, (2008). “Compact, low energy CO2 management using amine solution in a packed bubble column.” Chemical Engineering Journal, 135(1-2): 3-9.
doi:10.1016/j.cej.2007.01.002
Spiegler, K. (1969). “Process and System for Removal of Acidic Gases from Influent Gas to Fuel Cell.”, U.S. Patent Office, No. 3,466,138.
Stolaroff, J.K., G.V. Lowry & D.W. Keith (2005). "Using CaO- and MgO-rich industrial waste streams for carbon sequestration." Energy Conversion and Management, 46(5): 687-699.
doi:10.1016/j.enconman.2004.05.009
Stolaroff, J.K. “Capturing CO2 From Ambient Air: A Feasibility Assessment.” Ph.D. Thesis, CMU (2006).
Stolaroff, J.K., D.W. Keith & G.V. Lowry (2008). "Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray." Environmental Science & Technology, 42(8): 2728-2735.
doi:10.1021/es702607w
Zeman, F. (2008). “Experimental results for capturing CO2 from the atmosphere.” AIChE Journal 54(5): 1396-1399.
doi:10.1002/aic.11452

Back to Top

Membrane Separation of CO2 from Air

Bao, L. & M. Trachtenberg (2005). "Modeling CO2-facilitated transport across a diethanolamine liquid membrane." Chemical Engineering Science, 60(24): 6868-6875. doi:10.1016/j.ces.2005.05.056
Bao, L. & M. Trachtenberg (2006). "Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline." Journal of Membrane Science, 280: 330-334.
doi:10.1016/j.memsci.2006.01.036
Cowan, et al. (2001). "Enzyme-Based Facilitated Transport: Use of Vacuum Induced Sweep for Enhanced CO2 Capture." Society of Automotive Engineers, Inc., Paper No. 2001-01-2305.
doi:10.4271/2001-01-2305
Cowan, R. M. & M. Trachtenberg (2003). "CO2 Capture by Means of an Enzyme-Based Reactor." Ann. N.Y. Academy of Science, 984: 453-469.
doi:10.1111/j.1749-6632.2003.tb06019.x
Ge, J.-J.et al. (2002). “Enzyme-Based CO2 Capture for Advanced Life Support.” Life Support & Biosphere Science, Vol. 8: 181-189.
Lackner, K.S. (2006). “Membrane for Carbon Dioxide Separation at High Temperatures.” International Patent No. IPCT/US2006/014496 (US 60/672,399).
Trachtenberg, et al. (1999). “Carbon Dioxide Transport by Proteic and Facilitated Transport Membranes.” Life Support & Biosphere Science, 6: 293-302.
Trachtenberg, et al. (2002). “CO2 Capture by Enzyme-Based Facilitated Transport.” Society of Automotive Engineers, 2002-01-2267.
doi:10.4271/2002-01-2267
Trachtenberg, M., et al. (2009). “Membrane-based, enzyme-facilitated, efficient carbon dioxide capture.” Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), Energy Procedia, 1(1): 353–360. doi:10.1016/j.egypro.2009.01.048
Trachtenberg, et al. (2003). “Enzyme Based Membrane Reactor for CO2 Capture.” SAE International, Paper No. 2003-01-2499.
doi:10.4271/2003-01-2499
Trachtenberg, et al. (2004). “Dynamic Maintenance of CO2 Levels in Closed Environments.” SAE International, 2004-01-2376.
doi:10.4271/2004-01-2376
Wade, J., K. Lackner, & A. West (2007). “Transport Model for a High Temperature, Mixed Conducting CO2 Separation Membrane.” Solid State Ionics,178: 1530-1540. doi:10.1016/j.ssi.2007.09.007

Back to Top

Ocean and Mineral Capture

Kelemen, P.B., & J. Matter (2008). "In situ carbonation of peridotite for CO2 storage." PNAS, 105(45): 17295-17300.
doi:10.1073/pnas.0805794105
Kheshgi, H.S. (1995). “Sequestering atmospheric carbon dioxide by increasing ocean alkalinity.” Energy, 20(9): 915-922.
doi:10.1016/0360-5442(95)00035-F
Hartmann, J. and S. Kempe (2008). “What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale?” Naturwissenschaften, 95: 1159-1164.
doi:10.1007/s00114-008-0434-4
Harvey, L.D.D. (2008).“Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions.” Journal of Geophysical Research, 113(C04028): 21.
doi:10.1029/2007JC004373
Lackner, K.S., et al. (2009). “Carbon dioxide disposal in carbonate minerals.” Energy, 20(11): 1153–70.
doi:10.1016/0360-5442(95)00071-N
Mirjafari, P., K. Asghari, and N. Mahinpey (2007). “Investigating the Application of Enzyme Carbonic Anhydrase for CO2 Sequestration Purposes.” Ind. Eng. Chem. Res., 46(3): 921-926.
doi: 10.1021/ie060287u
Rau, G.H. & K. Caldeira (1999). "Enhanced Carbonate Dissolution: A Means of Sequestering Waste CO2 as Ocean Bicarbonate." Energy Conversion & Management 40(17): 1803-1813.
doi:10.1016/S0196-8904(99)00071-0
Rau, G.H., et al. (2006). "Opportunities for Low-Cost CO2 Mitigation in Electricity, Oil, and Cement Production." Presented at the 8th Greenhouse Gas Technology Conference (GHGT-8), Trondheim, Norway (June 2006): 1-4.
Rau, G.H. et al. (2007). "Reducing Energy-Related CO2 Emissions Using Accelerated Weathering of Limestone." Energy 32(8): 1471-1477.
doi:10.1016/j.energy.2006.10.011
Rau, G.H. & K. Caldeira (2007). "Coal's Future: Clearing the Air." Science, 316(5825): 691.
doi:10.1126/science.316.5825.691a
Rau, G.H. (2008). "Electrochemical Splitting of Calcium Carbonate to Increase Solution Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity." Environmental Science & Technology, 42(23): 8935-89408.
doi:10.1021/es800366q
Schuiling, R.D. and P. Krijgsman (2006). “Enhanced weathering: an effective and cheap tool to sequester CO2.” Climatic Change, 74: 349-354.
doi:10.1007/s10584-005-3485-y

Back to Top

Sorbents and Regeneration Methods

Electrochemical Capture

Bandi, A., M. Specht, T. Weimer, & K. Schaber (1995). “CO2 recycling for hydrogen storage and transportation --Electrochemical CO2 removal and fixation.” Energy Conversion and Management, 36(6-9): 899-902.
doi:10.1016/0196-8904(95)00148-7
House, K.Z., et al. (2007). “Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change.” Env. Sci. Tech, 41: 8464-8470.
doi:10.1021/es0701816
Rau, G.H. (2009). "Electrochemical CO2 Capture and Storage With Hydrogen Generation." Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), Energy Procedia 1(1): 823-828. doi:10.1016/j.egypro.2009.01.109

Back to Sorbents and Regeneration Methods
Back to Top

Liquid Based Sorbents with Heat Regeneration


Chowdhury, F.A., et al. (2009). “Development of novel tertiary amine absorbents for CO2 capture.” Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), Energy Procedia, 1(1): 1241-1248. doi:10.1016/j.egypro.2009.01.163
Davis, J. and G.T. Rochelle (2009). “Thermal degradation of monoethanolamine at stripper conditions.” Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), Energy Procedia,1(1): 327-333. doi:10.1016/j.egypro.2009.01.045
Gurkan, B., et al. (2010). “Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids.” Journal of the American Chemical Society, 132(7): 2116–2117. doi:10.1021/ja909305t
Nikulshina, V., N. Ayesa, et al. (2008). “Feasibility of Na-based thermochemical cycles for the capture of CO2 from air - Thermodynamic and thermogravimetric analyses.” Chemical Engineering Journal, 140(1-3): 62-70.
doi:10.1016/j.cej.2007.09.007
Oyenekan, B. and G. Rochelle (2007). “Alternative stripper configurations for CO2 capture by aqueous amines.” AIChE Journal,” 53(12): 3144-3154. doi:10.1002/aic.11316
Rao, A. B., et al. (2006). “Evaluation of potential cost reductions from improved amine-based CO2 capture systems.” Energy Policy, 34(18): 3765-3772. doi:10.1016/j.enpol.2005.08.004
Sexton, A., (2008). “Amine Oxidation in CO2 Capture Processes.” Ph.D. Thesis, University of Texas, Austin, Texas, December 2008. 286 p.
Zeman, F. (2007). “Energy and Material Balance of CO2 Capture from Ambient Air.” Environ. Sci. Technol., 41(21): 7558–7563.
doi:10.1021/es070874m

Back to Sorbents and Regeneration Methods
Back to Top

Solid/Resinous Sorbents with Humidity Regeneration

Banerjee, R., et al. (2009). “Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties.” Journal of the American Chemical Society, 131(11): 3875–3877.
doi: 10.1021/ja809459e
Chen, C., et al. (2009). “Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity.” Chem. Commun., 24: 3627-3629. doi:10.1039/B905589D
Choi, S., J.H. Drese, and C.W. Jones (2009). “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.” ChemSusChem, 2(9): 796–854. doi:10.1002/cssc.200900036
Demessence, A. et al. (2009). “Strong CO2 Binding in a Water-Stable, Triazolate-Bridged Metal−Organic Framework Functionalized with Ethylenediamine.” Journal of the American Chemical Society, 131(25): 8784-8786.
doi:10.1021/ja903411w
Eisenberger, P. and G. Chichilnisky, (2008) “System and method for removing carbon dioxide from an atmosphere and global thermostat using the same.” U.S. Patent Office, No. 20080289495.
Ferey, G.(2008). “Hybrid porous solids: past, present, future.” Chem. Soc. Rev., 37: 191-214.
doi:10.1039/B618320B
Gray, M.L. et al. (2005). “Improved immobilized carbon dioxide capture sorbents.” Fuel Processing Technology, 86(14-15): 1449-1455.
doi:10.1016/j.fuproc.2005.01.005
Hao, G., et al. (2010). “Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture.” Advanced Materials, 22(7): 853-857.
doi: 10.1002/adma.200903765
Hicks, J., et al. (2008). “Designing Adsorbents for CO2 Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capturing CO2 Reversibly.” Journal of the American Chemical Society, 130(10): 2902-2903.
doi:10.1021/ja077795v
Lackner, K.S. “Capture of Carbon Dioxide from Ambient Air.” Eur. Phys. J. Special Topics, 176(1):93-106.
doi:10.1140/epjst/e2009-01150-3
Lively, R., et al. (2009). “Hollow Fiber Adsorbents for CO2 Removal from Flue Gas. Industrial & Engineering Chemistry.” Industrial and Chemical Engineering Research, 48(15): 7314-7324.
doi:10.1021/ie9005244
Phan, A., et al. (2010). “Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.” Acc. Chem. Res., 43(1): 58–67. doi:10.1021/ar900116g
Quinn, R. (2003). “Ion exchange resins as reversible acid gas absorbents.” Separation Science and Technology, 38(14): 3385-3408.
doi: 10.1081/SS-120023405

Back to Sorbents and Regeneration Methods
Back to Top

Background Articles

Alternative Emissions Reduction Strategies

Committee on America’s Energy Future (2009). “America’s Energy Future: Technology and Transformation.” National Research Council of the National Academies. 650 p.
Pacala, S.W., and Socolow, R.H. (2004). “Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies,” Supporting Online Material. Science, 305(5686): 968-972.
doi: 10.1126/science.1100103
Socolow, R., et al. (2004). “Solving the Climate Problem: Technologies Available to Curb CO2 Emissions.” Environment. 46(10): 8-19.
Socolow, R.H. and S.W. Pacala (2006). “A Plan to Keep Carbon in Check.” Scientific American, 295: 50-57. .

Back to Background Articles
Back to Top

Biofuels

Fargione, J., et al. (2008). “Land clearing and the biofuel carbon debt.” Science, 319(5867): 1235-1238.
doi: 10.1126/science.1152747
O’Hare, M., et al. (2009). “Proper accounting for time increases crop-based biofuels’ greenhouse gas deficit versus petroleum.” Environmental Research Letters, 4: 7. doi:10.1088/1748-9326/4/2/024001
Searchinger, T., et al. (2008). “Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change.” Science, 319(5867): 1238-1240.
doi: 10.1126/science.1151861
Tilman, D., et al. (2009). “Beneficial Biofuels—The Food, Energy, and Environment Trilemma.” Science, 325(5938): 270-271.
doi: 10.1126/science.1177970

Back to Background Articles
Back to Top

Carbon Sources & Sinks

Energy Information Administration (2009). “Emissions of Greenhouse Gases in the United States 2008.” Office of Integrated Analysis and Forecasting, U.S. Department of Energy: Washington, DC.
Gnanadesikan, A. and I. Marinov (2008). “Export is not enough: nutrient cycling and carbon sequestration.” Marine Ecology Progress Series, 364: 289–294. doi:10.3354/meps07550
Hansen, M.C., et al. (2008). “Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data.” Proc. Natl Acad. Sci., 105: 9439-9444.
doi:10.1073/pnas.0804042105
Michael, K., et.al. (2010). “Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations.” Energy Procedia, Greenhouse Gas Control Technologies 9, Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), 1(1): 1973-1980.
doi: 10.1016/j.ijggc.2009.12.011
Sarmiento, J.L., et al. (2004). “High latitude controls of thermocline nutrients and low latitude biological productivity.” Nature, 426: 56-60.
doi: 10.1038/nature02127
van der Werf, G.R., et al. (2009). “CO2 emissions from forest loss.” Nature Geoscience. 2: 737-738.
doi:10.1038/ngeo671

Back to Background Articles
Back to Top

Climate & Atmospheric Chemistry

Held, I.M., and B. J. Soden (2000). “Water vapor feedback and global warming.” Annu. Rev. Energy Environ.,25: 441-475.
doi: 10.1146/annurev.energy.25.1.441
Wuebbles, D.J. and K. Hayhoe (2002). “Atmospheric Methane and Global Change.” Earth Science Reviews, 57(3-4): 177-210.
doi: 10.1016/S0012-8252(01)00062-9

Back to Background Articles
Back to Top

Physical & Chemical Data

Cullinane, J. and G. Rochelle (2005). “Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide.” Fluid Phase Equilibria, 227(2): 197-213. doi:10.1016/j.fluid.2004.11.011
Energy Information Administration (1994). “Carbon Dioxide Emission Factors for Coal.” In Quarterly Coal Report, U.S. Department of Energy. Q1: p. 1-8.
Energy Information Administration (2010). Voluntary Reporting of Greenhouse Gases Program Fuel and Energy Source Codes and Emission Coefficients [cited 2010 May]. Available from: http://www.eia.doe.gov/oiaf/1605/coefficients.html.
Green, D.W. and R.H. Perry (2008). Perry’s Chemical Engineers’ Handbook. 8th ed., McGraw Hill.
Hirschfelder, J.O., et al. (1954). Molecular Theory of Gases and Liquids. John Wiley and Sons. 1219 pp.
Kim, I. and H.F.I.E.C.R. Svendsen (2007). “Heat of Absorption of Carbon Dioxide (CO2) in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions.” Ind. Eng. Chem. Res, 46: 5803-5809.
doi: 10.1021/ie0616489
Lemmon, E.W., et al. (2007). NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0., National Institute of Standards and Technology, Standard Reference Data Program. Latest version available at http://www.nist.gov/srd/nist23.cfm.
McCann, N., et al. (2009). “Kinetics and Mechanism of Carbamate Formation from CO2 (aq), Carbonate Species, and Monoethanolamine in Aqueous Solution.” J. Phys. Chem. A. 113: 5022–5029.
doi: 10.1021/jp810564z
Pinsent, B., et al. (1956). “The kinetics of combination of carbon dioxide with hydroxide ions.” Transactions of the Faraday Society, 52: 1512-1520.
doi: 10.1039/TF9565201512
Silverman, D.N. (1994). “The Hydration of CO2 Catalysed by Carbonic Anhydrase.” In Carbon Dioxide Chemistry: Environmental Issues, J.P.P.a.C.M. Pradier, Editor. The Royal Society of Chemistry: Cambridge, UK. 171 p.
Soli, A. and R. Byrne (2002). “CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution.” Marine Chemistry, 78(2-3): 65-73.
doi: 10.1016/S0304-4203(02)00010-5
Span, R. and W. Wagner (1996). “A new equation of state for carbon dioxide covering the fluid region from the triplepoint temperature to 1100 K at pressures up to 800 MPa.” J. Phys. Chem. Ref. Data, 25(6): 1509-1596.
doi: 10.1063/1.555991
Stumm, W. and J. Morgan, eds (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley Interscience.
Tranchemontagne, D.J. and et al. (2008). “Reticular Chemistry of Metal-Organic Polyhedra.” Chem. Int. Ed., 47: 2-14.
doi: 10.1002/anie.200705008
Wang, X., et al. (2010). “Comprehensive Study of the Hydration and Dehydration Reactions of Carbon Dioxide in Aqueous Solution.” The Journal of Physical Chemistry A, 114: 1734-1740.
doi: 10.1021/jp909019u
Wei, J. (1975). “The Catalytic Muffler.” in Chemical Reaction Engineering Reviews, H.M. Hulburt, Editor. American Chemical Society, 148: p. 1-25.
doi: 10.1021/ba-1975-0148.ch001
Weiland, R., et al. (1997). “Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide.” J. Chem. Eng. Data,. 42(5): 1004-1006.
doi: 10.1021/je960314v

Back to Background Articles
Back to Top

 
Feedback: cmi@princeton.edu
Last update: September 21 2011
BP Princeton Environmental Institute © 2014 The Trustees of Princeton University
CMI is sponsored by BP.