CO$_2$ from space

Cyril Crevoisier
AOS, Princeton University

Alain Chédin, Sylvain Heilliette
Laboratoire de Météorologie Dynamique, CNRS, IPSL, France
Introduction

CO_2 is measured in different sites at the surface of Earth.

But the current network has some limitations:

- The stations are not well distributed on the globe.
- Tropics and South continents are almost not covered.
- The stations can be influenced by local sources.
- The temporal coverage may depend on the station.

The use of satellite observations, which are global and continue, should improve our capability to monitor CO_2.

Three techniques are currently used (or planned to be used) to infer atmospheric CO_2 concentration from space observations.
The principle of the measure is always the same:

1. A radiation goes through the atmosphere.

2. It is partly absorbed by CO_2, the absorption being controlled by its atmospheric concentration.

3. The remaining radiation measured above the atmosphere gives information on CO_2.

To be absorbed, the radiation must have a wavelength located in the spectral absorption bands of CO_2.

- The radiation is measured in terms of brightness temperatures (BT) by different channels.
- Each channel is characterized by its central wavelength and its spectral resolution.
- The higher the resolution, the better we can isolate the absorption due to CO_2.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
CO₂ from space

Vertical sounding in the thermal Infrared

radiation = Earth radiation in the thermal IR.

- To retrieve **CO₂** we study the correlation between gas-sensitive channels.
- These observations are used since many years to retrieve atmospheric T, **H₂O**, **O₃** that is their first goal.

Limitations:
- ✓ clouds and aerosols (but detection algorithms exist)
- ✓ not sensitive to **CO₂** near the surface.

<table>
<thead>
<tr>
<th>Instruments</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOVS</td>
<td>NOAA polar satellites</td>
<td>1979</td>
<td>8 CO₂ ch.</td>
</tr>
<tr>
<td>AIRS</td>
<td>NASA/Aqua</td>
<td>May 2002</td>
<td>800</td>
</tr>
<tr>
<td>IASI</td>
<td>ESA/MetOp</td>
<td>End of 2005</td>
<td>2000</td>
</tr>
</tbody>
</table>
Differential absorption in the near IR

- **radiation** = solar radiation reflected by the surface in a CO₂ absorption band.

Study of two measurements:
 - One centered on the absorption line
 - One centered on the edge.

- **two lines**: 1.6 and 2.0 µm
- mainlly sensitive to CO₂ variations in the lower part of the atmosphere.

- **limitations**:
 - aerosols and clouds.
 - solar diffraction.

Instruments:
- **SCIAMACHY** (Feb. 2002).
 - high instrumental noise
- **OCO** (2008): first instrument dedicated to the only CO₂.
CO₂ from space

Active techniques (under development)

- **✓ radiation** emitted by a known source (LIDAR) and then backscattered to the satellite.

 Then the principle is the same as absorption technique.

- **✓ two lines:** 1.6 and 2.0 µm
- **✓ the vertical sensitivity is still unknown.**

LIDAR in space (not yet for CO₂).

- **CALIPSO** (end of 2005).
Real-life: AIRS IR vertical sounder

- Each channel is sensitive to various atmospheric components.
- The variations of each component induces changes on the BT measured by each channel that are usually bigger than CO₂ ones...

A change of 1% of the CO₂ concentration induces a change of 0.04% of the signal observed on the channels.

- The signal is of the same level as instrumental noise.
- Non-linearities makes it difficult to solve this inverse problem.
Some results from AIRS: seasonal variations in the troposphere

Seven months of AIRS observations have been interpreted in terms of CO₂. Using a non-linear method based on neural networks [Chédin et al. 2003; Crevoisier et al. 2004].

Their seasonal variations show very good agreement with in situ measurement made by JAL commercial airliners in the same zone of the atmosphere.

Monthly tropospheric CO₂ maps are being produced at a 15°×15° resolution in the tropical zone.

CO₂ from space can bring information on transport phenomena and CO₂ sources and sinks at the surface.

Yet, surface measurements will always be needed, at least to validate observations from space.