11 February 2009

Tackling U.S. Energy Challenges and Opportunities
Preliminary Recommendations for Enhancing Energy Innovation

8th CMI Meeting, Princeton University

Laura Diaz Anadon, Kelly Sims Gallagher, Matthew Bunn, and Charles Jones
Overview

1. Context

2. Short-term ERD&D Budget Recommendations for DOE

3. Improving Management and Coordination

4. Stimulating Private Sector Investment

5. Expanding international Cooperation

6. Increasing and Targeting Incentives for Large-scale Deployment
Context of the ERD3 Project
Funded by the Doris Duke Charitable Foundation

- Part of the ETIP Group.
 - Directed by Kelly Sims Gallagher
 - John Holdren and Henry Lee are co-principal investigators
 - Robert Stowe is the Associate Director

- Managed by:
 - Laura Diaz Anadon

- ERD3 staffed by three post-doctoral fellows:
 - Melissa Chan
 - Charles “Skuk” Jones
 - Jose Condor
 - Draw on other ETIP Fellows and research assistants

- Helped by a distinguished Advisory Committee with 20 members from academia, industry, and NGOs.

- Project will last for three years (completion in December 2010).
Context of our Understanding of Innovation
The “stages” of energy-technology innovation

- Relatively modest investments to find out what improvements are possible.
- Larger investments to find out how the most promising possibilities work out at larger scales.
- Government role in early deployment is critical.
- Determined in the marketplace, based on characteristics & information arising from previous stages, and on cost & price signals.

→ Private sector engagement increases further down the chain

It is crucial to assess the system as a whole
Refrigerator/Freezer RD&D and Efficiency Standards
A successful story of coordination

Kilowatt-hours and cost in 2003 U.S.$

Cubic feet

Brown et al. 2005
Context of the Role of the U.S Government
A simplistic picture

Congress
Deployment
- Tax credits
- Loan guarantees
- Federal cap-and-trade proposal

States
A mixture
- Building codes
- Electricity regulation, e.g. RPS
- Siting permission
- RD&D

Department of Energy
(and other Depts.)
Mainly RD&D
- National Labs
- Partnerships
- Appliance standards
- Administering guarantees

EPA, NHTSA
Waste, air and water quality
- National CAFE standards
- CO₂ emission control
- CO₂ injection

International cooperation
State, DOE, Commerce, etc.

Lack of a strategy and coordination between agencies reduces efficiency
Policy Alignment is Essential to Speed up Technology Deployment

New Energy and Climate Whitehouse Coordinator, Energy Secretary, Science Advisor, and others must coordinate a unified approach

ERD3 funding in 2007 in the United States (by energy source)

Data from Federal Financial Interventions and Subsidies in Energy Markets 2007 (EIA) & Gallagher 2008
Context of the Recommendations
Essential ingredients, and short-term recommendations for budgets

- **Timing and objective**
 - Informing the process at a crucial time

- **Content**
 - Key initiatives needed to start upgrading the U.S. energy-technology innovation system
 - Short-term budget recommendations for DOE
 - We have ongoing detailed work on the design of long-term portfolios of investments in ERD&D which include a bottom-up expert elicitation and modeling

- **Relationship with “American Recovery and Reinvestment Act 2009”**
 - Stimulus package being discussed addresses many of the recommendations, e.g.:
 - CCS demos
 - Funding for storage and geothermal
 - Deployment (production tax credits, transmission funding)
 - We are recommending minimum feasible levels for FY 2010

http://belfercenter.ksg.harvard.edu/publication/18826/tackling_us_energy_challenges_and_opportunities.html
Department of Energy RD&D Budgets 1978-2009R
FY 2009 request was 45% of that in 1978

Gallagher, 2008
DOE ERD&D Budget Recommendations for Fiscal Year 2010
Longer-term recommendations to come from more detailed analysis

<table>
<thead>
<tr>
<th>Area</th>
<th>FY08 in current million $</th>
<th>Suggested for FY10 in current million $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Energy Sciences</td>
<td>1,177</td>
<td>1,500</td>
</tr>
<tr>
<td>Fossil Energy</td>
<td>676</td>
<td>1,700</td>
</tr>
<tr>
<td>Electric Transmission & Distribution</td>
<td>102</td>
<td>220</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>520</td>
<td>770</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>730</td>
<td>850</td>
</tr>
<tr>
<td>Hydrogen (part of EERE)</td>
<td>211</td>
<td>220</td>
</tr>
<tr>
<td>Nuclear Fission</td>
<td>472</td>
<td>350</td>
</tr>
<tr>
<td>Nuclear Fusion</td>
<td>287</td>
<td>450</td>
</tr>
<tr>
<td>Total BES + ERD&D</td>
<td>4,173</td>
<td>6,060</td>
</tr>
</tbody>
</table>
Improving Management and Coordination
Need for a coherent strategy, coordination, and new mechanisms

- **Develop, publish, and implement a U.S. energy-innovation strategy**
 - Coherent strategy using a wide range of policy tools across the chain
 - Strategy balancing the role of the public and private sectors, and integrating international cooperation

- **Improve energy policy coordination government-wide**
 - Recently created post for Whitehouse Coordinator for Energy and Climate Change is an important step
 - Need to delineate its role, and that of other key actors (OSTP, DOE, etc.)

- **Create mechanisms to manage demonstration projects and high-risk, high-potential R&D**
 - The government should create mechanisms to adequately manage technology demonstration projects
 - A mechanism to fund high-risk high-potential R&D is needed. ARPA-E might serve this function
Encouraging Private Sector Investment
Policy certainty, R&D tax credits, and improve partnerships

- Set economy-wide carbon constraints

- Make permanent and expand Research and Experimentation tax credits
 - In 1980s, the United States had the most generous R&D tax credit; by 2004 it was the 17th most generous country

- Adopt good partnership models
 - Work on this area is ongoing
Strengthening International Cooperation
Current effort is small and uncoordinated

- **Many drivers for international cooperation**
 - Share costs and risks of basic research (e.g. ITER)
 - Increase the utilization of facilities
 - Share the costs of technologies expected to provide public benefits (e.g. CCS, fission R&D)
 - Promote interaction and discussion with partner countries
 - But most importantly, the environmental, macroeconomic, and national-security risks of the energy sector are global

- **Government should develop a cooperation strategy with priorities**

- **Administration should take early cooperation steps with China**
 - Make an early Presidential trip to China with energy and climate change high on the agenda, followed by high-level meetings
 - Set up a major cooperative effort in CCS;
 - Establish a U.S.-China Center for Clean Power Innovation
 - Set up new cooperation mechanisms in advanced vehicles, batteries, renewables, and efficiency
Targeting and Better Coordinating Deployment Incentives
Options for sectoral approaches

- **Economy-wide carbon constraints**

- **Electricity sector**
 Obama advocated a national RPS of 10% of renewable electricity by 2012, and 25% by 2025
 Investment tax credits have been extended to 2016, production tax credits likely to be extended for 3 years
 - Assess the effectiveness of loan guarantees
 - Evaluate how to best incentivize needed investments in transmission and distribution

- **Transportation sector**
 - Consider
 - Replacing CAFE standards with CO₂ emission standards
 - Creating a feebate system to promote the purchase of efficient vehicles
 - Setting a floor on oil prices
 - Setting a federal mandate for a fraction of vehicles sold to be flex-fuel, or plug-in hybrids
 - Promoting mass transport: e.g. expanding bus and subway, reducing public transportation fares, building a high-speed intercity rail

- **Buildings sector**
 - Consider
 - Encouraging states to place stringent building codes and DSM programs
 - Retrofitting public and low-income buildings
Thank you for your attention.

www.energytechnologypolicy.org