CO₂ Storage in Basalt Formations

An efficient method for field-scale reservoir simulation

Tom J.W. Postma

PhD Candidate, Princeton University Subsurface Hydrology Research Group PI: Michael A. Celia

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Storage security

Figure 1: Schematic representation of a CCS project.

Storage security

Figure 2: $\underline{Accurate}$ representation of a CCS project.

Storage security

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Basalt as an alternative injection target

Figure 4: Basalt outcrop on the Isle of Staffa, Scotland.

Basalt as an alternative injection target

- Layered sequence of solidified lava flows.
- Porous, permeable flow tops can provide storage capacity.
- Potential for rapid mineral trapping due to Ca, Mg and Fe(II)-rich mineralogy.
- Pilot-scale injections show compelling evidence of mineral trapping on short time scales.

Figure 5: Scoria from flow tops: porous and permeable.

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Relevance for BP: CCS and the energy transition

- Basalt can provide alternative CO₂ storage capacity when sedimentary formations are absent or costly to develop.
- · Possible examples include: India, Iceland and the NW-U.S.A.
- Stability and security of mineral trapping may improve prospects for building and maintaining social license for CCS deployment.
- Mineral trapping on short time scales may significantly reduce the risks and costs associated with postinjection monitoring and verification.

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Open questions before large-scale implementation

- How will chemical reactions alter the formation?
 - Porosity
 - · Permeability
 - · Formation integrity
- Can we control where and when chemical reactions take place?
- Can a full-scale project expect mineralization on political time scales?
- To what extent do the 'chemical details' matter?
 - Exact mineralogy
 - · Formation water composition
- · We need a flexible, efficient modeling tool.

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Development of an efficient numerical simulation method

Modeling of CO₂ injection in reactive rocks is a complex problem:

- Flow of two phases, with CO₂ dissolving into formation water.
- · An arbitrarily large number of chemical reactions.
- A rock formation that changes over time.

$$\begin{aligned} \text{CO}_2 + \text{H}_2\text{O} &\rightarrow \text{CO}_3^{2-} + 2\,\text{H}^+ \\ \text{Fe}_2\text{SiO}_4 + 4\,\text{H}^+ &\rightarrow 2\,\text{Fe}^{2+} + \text{H}_4\text{SiO}_4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} &\rightarrow \text{FeCO}_3 \end{aligned}$$

Development of an efficient numerical simulation method

- An efficient fluid flow model of CO₂ injection in saline aquifers.
- A highly customizable gechemistry solver.
- Combined in an operator splitting algorithm.

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

CO₂ injection into a non-reactive rock type

CO₂ injection into a non-reactive rock type

CO₂ injection into a non-reactive rock type

Mitigation

Figure 8: At any time, only a small percentage of CO2 is dissolved or residually trapped.

Stratigraphic Residual

Solution Mineral

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

Putting the model's efficiency to use

Figure 9: We are interested in the percentage of CO₂ that has mineralized over time.

Putting the model's efficiency to use

Figure 9: We are interested in the percentage of CO₂ that has mineralized over time.

Putting the model's efficiency to use

- Investigate how mineralization time depends on reservoir properties:
 - · Dip angle
 - · Permeability
 - · Initial porosity
- Identify a range of possible values for real systems.
- Analyze simulation results for many different combinations of values.

Figure 10: Do reservoir properties have a large impact on mineralization time?

Impact of reservoir properties

Impact of reservoir properties

What if chemical reactions were much faster?

Carbon

Mitigation

Initiative

What if chemical reactions were much faster?

Estimated loss of permeability

- Mineral reactions can alter the **porosity** of the formation, which will in turn affect **permeability**.
- This may result in an unacceptable decrease in injectivity.
- There is not yet a generally accepted porosity-permeability relationship for basalt.
- To get a first estimate, assume that basalt behaves like sedimentary formations and use a commonly used relationship for sandstones.

Estimated loss of permeability

1. Background

- Storage security
- Basalt as an alternative injection target
- Relevance for BP: CCS and the energy transition

2. Research focus

- Open questions before large-scale implementation
- Development of an efficient numerical simulation method

3. Results

- A close-up view of some typical simulations
- Putting the model's efficiency to use

- Basalt formations may provide alternative storage capacity to supplement that of conventional reservoirs.
- Consistent with previous research, CO₂ injection in basalt was
 observed to result in significant mineral trapping due to the
 reactivity of the rock.
- However, our results indicate that an increased scale of injection may result in mineralization times that are orders of magnitude longer than those observed in small-scale pilot injections.

CO₂ Storage in Basalt Formations

An efficient method for field-scale reservoir simulation

Tom J.W. Postma

PhD Candidate, Princeton University
Subsurface Hydrology Research Group
PI: Michael A. Celia

