Science Publications

  • Batterman, S.A., L.O. Hedin, M. van Breugel, J. Ransijn, D.J. Craven, and J.S. Hall, 2013. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature, 502: 224- 227. doi:10.1038/nature12525. doi:10.1038/ nature12525.
  • Bernardello, R., I. Marinov, J. B. Palter, J. L. Sarmiento, E. D. Galbraith, and R. D. Slater, 2014. Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Climate, 27: 2033-2053. doi: 10.1175/JCLI-D-13-00343.1.
  • Bernadello, R., I. Marinov, J. Palter, and J. L. Sarmiento, 2014. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett., 41: 7262–7269. doi: 10.1002/2014GL061313.
  • Carter, B. R., J. R. Toggweiler, R. M. Key, and J. L. Sarmiento, 2014. Processes determining the marine alkalinity and carbonate mineral saturation distributions. Biogeosci. Discuss., 11: 7349-7362. doi:10.5194/bg-11-7349-2014.
  • Chen, A.P., J.W. Lichstein, J.L.D. Osnas, and S.W. Pacala, 2014. Species-independent down-regulation of leaf photosynthesis and respiration in response to shading: evidence from six temperate forest tree species. PLoS ONE, 9(4): e91798.
  • Christensen, V., M. Coll, J. Buszowski, W. Cheung, T. L. Frölicher, J. Steenbeek, C. Stock, R. Watson, and C. J. Walters, 2014. The global ocean is an ecosystem: Simulating marine life and fisheries. Glob. Ecol. Biogeogr., 2 February, 2015. doi:10.1111/geb.12281.
  • de Souza, G. F., R. D. Slater, J. P. Dunne, and J. L. Sarmiento, 2014. Deconvolving the controls on the deep ocean’s silicon stable isotope distribution. Earth Planet. Sci. Lett., 398: 66-76. doi:10.1016/j.epsl.2014.04.040.
  • Dybzinski, R., C.E. Farrior, and S.W. Pacala, 2015. Increased forest carbon storage with increased atmospheric CO2 despite nitrogen limitation: A game-theoretic allocation model for trees in competition for nitrogen and light. Glob. Chang. Biol., 21(3):1182-96. doi:10.1111/gcb.12783.
  • Frölicher, T. L., M. Winton, and J. L. Sarmiento, 2014. Continued global warming after CO2 emissions stoppage. Nat. Clim. Chang., 4: 40-44. doi:10.1038/ nclimate2060.
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, and M. Winton, 2014. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28(2): 862-886. doi:10.1175/JCLI-D-14-00117.1.
  • Goldman J.A.L., S.A. Kranz, J.N. Young, P.D. Tortell, R.H.R. Stanley, M.L. Bender, and F.M.M. Morel, 2015. Gross and net production during the spring bloom along the Western Antarctic Peninsula. New Phytologist., 205: 182-191. doi:10.1111/ nph.13125.
  • Griffies, S. M., M. Winton, W. G. Anderson, R. Benson, T. L. Delworth, C. O. Dufour, J. P. Dunne, P. Goddard, A. K. Morrison, A. Rosati, A. Wittenberg, J. Yin, and R. Zhang, 2014. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28(3): 952-977. doi:10.1175/JCLIM-D-14-00353.1.
  • Kranz, S. A., J.N. Young, B.M. Hopkinson, J.A.L. Goldman, P.D. Tortell, and F.M.M.Morel, 2015. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. New Phytologist., 205: 192-201. doi:10.1111/ nph.12976.
  • Levy, J., D. Medvigy, S.A. Batterman, X. Xu, and L.O. Hedin. Individual-based dinitrogen fixation and biodiversity interact to determine tropical forest carbon uptake. To be submitted to Nat. Clim. Chang., spring 2015.
  • Lichstein, J. W., N.-Z. Golaz, S. Malyshev, E. Shevliakova, T. Zhang, J. Sheffield, R. A. Birdsey, J. L. Sarmiento, and S. W. Pacala, 2014. Confronting terrestrial biosphere models with forest inventory data. Ecol. App., 24: 699-715. doi:10.1890/13-0600.1.
  • Majkut, J. D., B. Carter, C. O. Dufour, T. L. Frölicher, K. Rodgers, and J. L. Sarmiento, 2014. An observing system simulation for Southern Ocean CO2 uptake. Phil. Trans. R. Soc. A., 312: 20130046. doi:10.1098/ rsta.2013.0046.
  • Majkut, J. D., J. L. Sarmiento, and K. B. Rodgers, 2014. A growing oceanic carbon uptake: results from an inversion study of surface pCO2 data. Glob. Biogeochem. Cycles, 28: 335-351. doi:10.1002/2013GB004585.
  • Mislan, K.A.S., C. A. Stock, J. P. Dunne, and J. L. Sarmiento, 2014. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res., 72: 1-36.
  • Morrison, A. K., T. L. Frölicher, and J. L. Sarmiento, 2015. Upwelling in the Southern Ocean. Phys. Today, 68: 27-32. doi:10.1063/ PT.3.2654.
  • Ogle, K., S. Pathikonda, K. Sartor, J.W. Lichstein, J. Osnas, and S.W. Pacala, 2014. A model-based meta-analysis for estimating species specific wood density and identifying potential sources of variation. J. Ecology, 102(1): 194-208. doi:10.1111/1365- 2745.12178.
  • Raupach, M. R., M. Gloor, J. L. Sarmiento, J. G. Canadell, T. Gasser, R. A. Houghton, C. Le Quéré, and C. M. Trudinger, 2014. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences, 11: 3453-3475. doi:10.5194/bg-11-3453-2014.
  • Sulman, B.N., R.P. Phillips, A.C. Oishi, E. Shevliakova, and S.W. Pacala, 2014. Microbe-driven turnover offsets mineralmediated storage of soil carbon under elevated CO2. Nat. Clim. Change, 4: 1099- 1102. doi:10.1038/nclimate2436.
  • Tortell, P.D., E.C. Asher, H.W. Ducklow, J.A.L. Goldman, J.. H. Dacey, J.J. Grzymski, J.N. Young, S.A. Kranz, K. S. Bernard, and F.M.M. Morel, 2014. Metabolic balance of coastal Antarctic waters revealed by autonomous pCO2 and ΔO2 /Ar measurements. Geophysical Research Letters, 41(19): 6803-6810. doi:10.1002/2014GL061266.
  • Violle, C., P.B. Reich, S.W. Pacala, B.J. Enquist, and J. Kattge, 2014. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci., 111(38): 13690-13696. doi: 10.1073/pnas.1415442111.
  • Weng, E., S. Malyshev, J. W. Lichstein, C.E. Farrior, R. Dybzinski, T. Zhang, E. Shevliakova, and S.W. Pacala, 2014. Scaling from individuals to ecosystems in an Earth System Model using a mathematically tractable model of height-structured competition for light. Biogeosciences Discuss., 11: 17757-17860, in review. doi:10.5194/bgd-11-17757-2014.
  • Young J.N., J.A.L. Goldman, S.A. Kranz, P.D. Tortell, and F.M.M. Morel, 2015. Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytologist., 205: 172-181. doi: 10.1111/nph.13021.
  • Young, J.N., S. Kranz, J. Goldman, P.D. Tortell, and F.M.M. Morel, 2015. Under high CO2, Antarctic phytoplankton down-regulate their carbon concentrating mechanisms with no change in growth rates. MEPS, in review.